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Abstract
The mammalian genome experiences profound setting and resetting of
epigenetic patterns during the life-course. This is understood best for DNA
methylation: the specification of germ cells, gametogenesis, and early
embryo development are characterised by phases of widespread erasure
and rewriting of methylation. While mitigating against intergenerational
transmission of epigenetic information, these processes must also ensure
correct genomic imprinting that depends on faithful and long-term memory
of gamete-derived methylation states in the next generation. This
underscores the importance of understanding the mechanisms of
methylation programming in the germline.   methylation in theDe novo
oocyte is of particular interest because of its intimate association with
transcription, which results in a bimodal methylome unique amongst
mammalian cells. Moreover, this methylation landscape is entirely set up in
a non-dividing cell, making the oocyte a fascinating model system in which
to explore mechanistic determinants of methylation. Here, we summarise
current knowledge on the oocyte DNA methylome and how it is established,
focussing on recent insights from knockout models in the mouse that
explore the interplay between methylation and chromatin states. We also
highlight some remaining paradoxes and enigmas, in particular the
involvement of non-nuclear factors for correct   methylation.de novo
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Mammalian oocytes have a distinctive epigenome
DNA methylation is considered a repressive epigenetic modi-
fication. In most mammalian somatic cells, it occurs across 
the majority of the genome, with the notable exception of  
active gene regulatory elements, such as promoters, enhanc-
ers, and CpG islands that are generally unmethylated; meth-
ylation of such elements represses their activity1. Thus, DNA 
methylation is thought to function in the regulation of gene 
expression and in genome stability of heterochromatic regions. 
The oocyte is different in that both the genomic methyla-
tion pattern and its function are distinct from somatic cells. In 
oocytes, methylation is largely restricted to actively transcribed  
regions, including gene bodies, giving the oocyte genome 
a bimodal pattern of highly methylated gene bodies sepa-
rated by intergenic or transcriptionally inactive regions with 
low levels of methylation2–4 (Figure 1). This simplified pattern 
might be a consequence of the fact that only a single de novo  
methyltransferase—DNA methyltransferase (DNMT) 3A—is 
active in oocytes5, but it also reflects that this is a newly 
acquired landscape, most pre-existing methylation having been 
erased. During mammalian embryo development, DNA meth-
ylation is globally erased in the primordial germ cells, which  
arise from cells of the epiblast. Thus, primary oocytes when they 
are first specified (which we can define as when a primordial 
germ cell enters and then arrests in the first meiotic prophase, 
in which state it remains until ovulation) are almost devoid  
of methylation2,5–7. DNA methylation is re-set during the 

later stages of oocyte growth, culminating in the oocyte-spe-
cific pattern. The oocyte therefore represents a fascinating 
model system to study DNA methylation mechanisms because 
an entire methylation landscape is established from scratch  
in a non-dividing cell. As much of our knowledge of the  
mechanisms and function of oocyte methylation has come 
from mouse models, we will focus mainly on the mouse in 
this review. For a comprehensive comparison between human  
and mouse oocyte methylation, see 8.

The general restriction of methylation to actively transcribed 
gene bodies in the oocyte may indicate a distinct function. In 
somatic cells, gene-body methylation has been suggested to 
be one mechanism by which cryptic, intragenic promoters are 
repressed9, although this conclusion has been questioned10.  
But methylation probably has little influence in control-
ling gene activity in the oocyte itself because primary oocytes 
appear to initiate a faithful transcription programme before 
DNA methylation is put in place11, and RNA-seq analysis of  
Dnmt3L-knockout oocytes that are effectively devoid of meth-
ylation indicate that there are no transcriptional differences  
compared with control oocytes2. It might be that more care-
ful analysis with improved RNA-seq methods could reveal 
some subtle effects. It is not evident, either, that methylation is 
required for repression of transposable element activity in oocytes.  
Where methylation in oocytes is absolutely essential for con-
ferring DNA methylation is at imprinted genes. Imprinting  

Figure 1. Schematic depicting the typical DNA methylation pattern of fully grown oocytes over active gene bodies and distribution 
of associated chromatin marks. While H3K36me3 is enriched over methylated domains, H3K27me3 and H3K9me2 are enriched in 
unmethylated domains. H3K4me3 has an unusual pattern in the oocyte in that peaks can be found at both active and inactive gene promoters 
(dark red) as well as enrichment over broad domains in untranscribed regions (light red). H3K27me3 is also broadly distributed over non-
transcribed regions in oocytes but generally mutually exclusive to H3K4me3.
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is a process in which parent-of-origin allele-specific DNA  
methylation results in monoallelic expression of imprinted 
genes in offspring tissues12. Most imprinted genes in the mouse  
and human have their imprinting control regions (ICRs or germ-
line differentially methylated regions [DMRs]) methylated 
in oocytes. These ICRs are CpG islands that are intragenic in 
oocytes and become methylated during oocyte growth4. Failure to  
establish methylation at ICRs in the oocyte results in severe 
developmental abnormalities13, showing the importance of 
correct epigenetic programming in the oocyte for the next  
generation.

It might seem extravagant to methylate a large fraction of the 
genome to ensure methylation of a couple of dozen imprinted 
loci. However, Dnmt3L- and Dnmt3a-null oocytes, which lack 
most DNA methylation, are ostensibly normal, can be ferti-
lised, and will support development of the embryo until beyond 
implantation, when imprinting defects cause developmental  
arrest13,14). But it is possible that methylation in the oocyte has 
significance beyond classical imprinted genes. Embryos devel-
oping from DNA methylation-deficient oocytes succumb to 
problems in trophoblast development, hence placental defects,  
for which a contribution of genes outside known imprinted 
genes has been implicated15. Thus, it seems likely that there 
are more extensive effects of oocyte methylation than classical  
imprinted genes.

De novo methylation requires active transcription
Consistent with the predominant gene-body pattern of  
methylation, de novo DNA methylation in the oocyte has been 
shown to require active transcription. Knockout experiments in 
the mouse have shown that abrogating transcription across indi-
vidual genes results in failure to establish methylation at these  
loci4,16–18. These examples focus on imprinted genes, whose 
imprinting status depends on the acquisition of DNA methylation 
at their ICRs. Similar conclusions have been drawn from  
human studies, in which chromosome deletions or rearrange-
ments that are likely to result in interrupting transcription across 
imprinted domains lead to imprinting disorders19–21. This sets up 
the important premise that whether or not a gene is transcribed in  
oocytes can determine how it is regulated in the next generation.

Because of the predominant connection with transcription, spe-
cies-specific variations in the oocyte transcriptome become 
reflected in variations in the oocyte methylome. A significant 
proportion of transcription units in oocytes have been found to 
be determined by alternative promoters4. Strikingly, more than  
a third of oocyte-specific transcription units initiate from active 
long-terminal repeats (LTRs) of endogenous retroviral elements, 
notably of the MaLR and endogenous retrovirus K (ERVK)  
classes4,22,23. As LTR insertions differ between species, and 
even between strains of mice, the ensuing oocyte methylation 
patterns differ23. This variation can also provide the basis for  
differences in imprinted genes between human and mouse24.

Mechanistic predictions of DNMT targeting
There appears to be a simple logic to the methylation pat-
tern that arises in oocytes, which is informed by the biochemi-
cal properties of the de novo methyltransferases involved: in 

mouse oocytes, this is DNMT3A as the active enzyme and the  
related DNMT3L as an essential auxiliary factor. Ablation 
of either in oocytes abolishes de novo methylation to similar  
degrees2,5,6. Both proteins have limited DNA binding specifi-
city; instead their binding and activity is modulated by the post-
translation modification state of histone proteins. Notably, both 
DNMT3A and DNMT3L bind the amino-terminal domain of 
histone H3 through their plant homeodomain (PHD)/ADD  
domains, but not when lysine 4 (H3K4) is methylated25. Recogni-
tion of unmethylated H3K4 releases DNMT3A from an autoin-
hibitory conformation26. In addition, the Pro-Trp-Trp-Pro motif 
(PWWP) domain of DNMT3A (there is no equivalent domain in 
DNMT3L) binds H3K36me2/3, at least in vitro27,28. DNMT3A 
may also interact with H3K27me329,30, but this interaction  
does not apply to the isoform expressed in oocytes.

The antagonistic and permissive interactions of DNMT3A/
DNMT3L with H3K4me3 and H3K36me3, respectively, set up 
a simple scenario that could account for the gene-body meth-
ylation pattern characteristic of oocytes. H3K36me3 should 
be enriched over active gene bodies; H3K4me3 should demar-
cate active promoters and other CpG islands31. Intergenic or  
non-transcribing regions should have neither mark, such that 
these regions are neutral to the DNMT3A/DNMT3L complex. 
Chromatin immunoprecipitation and sequencing (ChIP-seq) 
profiles for mouse (and human) oocytes that have emerged 
in recent years can be interpreted largely to support this 
model: DNA methylation domains coincide with regions of  
H3K36me3 enrichment, and DNA methylation is absent from or 
much reduced in sites of H3K4me3 enrichment32–35 (Figure 1). 
Intriguingly, ChIP-seq data have revealed unusual proper-
ties of chromatin in mouse oocytes, in particular a widespread  
accumulation of H3K4me3 over intergenic and low methylated 
domains32–34.

What have mouse knockout models told us?
More definitive tests of the model above have come from gene 
knockouts in the mouse. H3K36me3 is conferred by a single, 
conserved enzyme, SETD2, which associates with the elon-
gating RNA polymerase II, thus depositing H3K36me3 over 
transcribed gene bodies and recruiting the DNA methylation  
machinery (Figure 2A). CpG islands are normally depleted 
in H3K36me3, but during the course of oocyte growth, intra-
genic CpG islands destined for DNA methylation gain 
H3K36me3 enrichment36. Oocyte-specific ablation of SETD2 
causes loss of H3K36me3 and, as expected, gene-body meth-
ylation is eliminated, as too is methylation of ICRs35. Rather  
surprisingly, however, there is appearance of DNA methyla-
tion in regions of the genome ordinarily unmethylated, as if 
DNMT3A/DNMT3L becomes more promiscuous in the absence 
of its favoured mark. It is possible that this off-target activ-
ity reflects the opportunity presented by the length of time  
over which de novo methylation can occur in oocytes, which 
may be several days during the latter stages of follicular  
development and oocyte growth.

Evidence for a role for active removal of H3K4 methylation first 
came with the knockout of lysine demethylase 1B (KDM1B) 
(AOF1), one of the two known H3K4me2 demethylases37.  
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Figure 2. Models showing chromatin factors involved in DNA methyltransferase (DNMT) 3A/DNMT3L recruitment in methylated 
regions and factors inhibiting DNMT3A/DNMT3L binding at unmethylated regions. A) At actively transcribed gene bodies, SETD2-
mediated H3K36me3 has been proposed to recruit DNMT3A/DNMT3L, whilst lysine demethylase 1B (KDM1B) seems to be required to 
prevent or remove histone 3 lysine 4 (H3K4) methylation. DNMT1 is needed for methylation of hemimethylated DNA. B) Ubiquitin-like, plant 
homeodomain and ring finger-containing 1 (UHRF1) is required for intermediate DNA methylation of some genic and intergenic regions, 
likely by recruiting one of the DNMT proteins, but the chromatin requirements are unknown. C) At active promoters, H3K4me3 is thought 
to prevent DNMT3A/DNMT3L binding. D) Transcriptionally inactive regions can be marked by mixed lineage leukaemia-2 protein (MLL2)-
mediated H3K4me3 and/or polycomb repressive complex 2 (PRC2)-mediated H3K27me3, preventing recruitment of DNMT3A/DNMT3L to 
these regions. EED, embryonic ectoderm development; EZHIP, EZH inhibitory protein; SETD2, SET domain containing 2.
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Single-locus analysis indicated that some imprinted gDMRs  
failed to become methylated in Kdm1b-null oocytes37. Subse-
quent genome-wide interrogation of methylation showed that 
most imprinted ICRs exhibit reduced methylation in Kdm1b 
knockout oocytes, as do many CpG islands that normally become 
methylated in oocytes36 (Figure 2A). Why some imprinted  
ICRs are more sensitive to the loss of KDM1B is not fully 
known, but there is some evidence that ICRs and CpG 
islands acquiring methylation later in oocyte growth are more  
susceptible11,36,37.

So far, there is no indication of a specific involvement of an 
H3K4me3 demethylase for de novo DNA methylation, despite 
the expectation that CpG islands destined for DNA methyla-
tion are initially enriched in H3K4me3 in primary oocytes36. 
Of the H3K4me3 demethylases, lysine demethylase 5C 
(KDM5C) (JARID1C) is the most abundantly expressed at the  
transcriptional level in mouse oocytes, but oocyte-specific abla-
tion of KDM5C does not impair de novo DNA methylation 
(Huang and Kelsey, unpublished data). It is possible that the 
necessary removal of H3K4me3 from CpG islands could be  
accomplished by nucleosome replacement as part of the tran-
scription process. Ablation of the chaperone protein HIRA 
responsible for incorporation of H3/H4 outside of DNA  
replication dramatically reduces DNA methylation38, which 
could attest to the contribution of nucleosome remodelling  
in de novo DNA methylation.

As noted above, oocyte chromatin is unusual in that H3K4me3, 
which is normally highly localised to active promoters, accu-
mulates over intergenic/non-transcribed domains during 
oocyte growth32–34 (Figure 1). Accordingly, there could be an  
expectation that this pervasive H3K4me3 would constrain depo-
sition of DNA methylation32, noting that H3K4me3 and DNA 
methylation are accumulating in the oocyte genome with simi-
lar kinetics34. However, ablation of mixed lineage leukaemia-2 
protein (MLL2/lysine methyltransferase 2B [KMT2B]), which 
is responsible for the bulk of intergenic H3K4me3, results in 
very limited ectopic DNA methylation34. This result would  
tend to argue that absence of the antagonistic H3K4me3 
modification is insufficient to promote genomic binding of 
DNMT3A/DNMT3L and recruitment depends more on an attrac-
tive mark, such as H3K36me3. In contrast, removal of DNA  
methylation from oocytes through ablation of DNMT3A results 
in further spreading of H3K4me3 into ordinarily methylated 
domains, suggesting that genomic recruitment of MLL2 is pre-
dominantly determined by the availability of unmethylated  
CpG sites34.

Canonical H3K4me3 is present at active promoters in the 
oocyte and thought to prevent DNA methylation at those 
sites (Figure 2C). Canonical H3K4me3 does not depend on 
MLL2, and the methyltransferase catalysing this mark is still 
unknown. Besides H3K4me3, H3K27me3 may also prevent 
DNMT3A/DNMT3L from methylating DNA, as H3K27me3 and  
DNA methylation are generally found to be mutually exclusive, 
including in oocytes (Figure 2D)39. Although mouse knockouts 
of members of the polycomb repressive complex 2 (PRC2), 

such as embryonic ectoderm development (EED) and the germ- 
cell-specific EZH inhibitory protein (EZHIP), have been 
described, so far they have not been evaluated for effects on  
DNA methylation in the oocyte40–42.

The repressive modifications H3K9me2 and H3K9me3 have 
often been associated with DNA methylation. In the oocyte, 
H3K9me2 is enriched in regions devoid of DNA methylation43. 
In line with this, ablating one of the major euchroma-
tin H3K9me2 methyltransferases, G9A/euchromatin histone  
methyltransferase 2 (EHMT2), has very limited impact on DNA 
methylation in oocytes43. Similar to other cell types, H3K9me3 
in the oocyte is associated with DNA methylation and both 
marks can be found at silenced developmental genes44. However, 
there is no current evidence suggesting that de novo methylation 
depends on H3K9me3. Instead, both H3K9me2 and H3K9me3 
have been proposed to be involved in DNA methylation main-
tenance, as the DNMT1 accessory protein ubiquitin-like, PHD 
and ring finger-containing 1 (UHRF1) has a binding domain for  
H3K9me345–48.

The precise timing and dependencies of the chromatin events 
required to ensure faithful DNA methylation are still not fully 
understood. For example, is a specific activity required to 
enable H3K36me3 to accumulate at intragenic CpG islands, 
or is it accomplished by nucleosome turnover/replacement  
associated with transcription? The interdependence of many 
of the processes makes testing all elements of the model dif-
ficult. For example, earlier work in which transcription 
across the imprinted Zac1 locus was ablated indicated that  
transcription was required for not only deposition of H3K36me3 
but also removal of H3K4me2 at the ICR-CpG island4. This 
could be interpreted as a requirement for transcription to 
recruit the H3K4me2 demethylase KDM1B, and, indeed, full 
methylation at this ICR does depend on KDM1B36,37. But, 
from the Setd2 knockout35, it is also possible that ablation of  
H3K36me3 from the region leads to ectopic marking of 
H3K4me3 or H3K27me3 across the locus, which would be  
antagonistic to DNA methylation.

Methylation independent of transcription
We have focussed above on mechanisms that explain hyper-
methylated domains over gene bodies; however, a small frac-
tion of the oocyte methylome falls outside of transcribed 
regions. Methylation of these regions depends on the DNMT1 
accessory protein UHRF149, but the mechanism is not under-
stood (Figure 2B). Correlation with chromatin maps may now 
help to suggest mechanistic links. The above also portrays  
unmethylated regions as being completely passive and remain-
ing unmethylated because there is nothing to recruit DNMT3A/
DNMT3L to these regions (under normal circumstances). 
Intriguingly, ablation of the protein STELLA (DPPA3, primor-
dial germ cell 7 [PGC7]) leads to pronounced aberrant gain of 
methylation of intergenic, unmethylated domains50, and this  
depends on UHRF1 and DNMT1. This finding leads to the 
model in which STELLA is required to prevent nuclear activ-
ity of DNMT1/UHRF1 in oocytes (Figure 3). Nevertheless, 
DNMT1 does seem to be required to fill in the gaps in methylation  
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left by DNMT3A5, i.e. to ensure symmetric methylation of  
CpG sites, thus demonstrating a role for DNMT1 outside of DNA 
replication (Figure 2A).

DNMT3 paradoxes
The model above indicates a role for H3K36me3 in recruit-
ing DNMT3A to active gene bodies, which was predicted 
to be mediated via the PWWP domain of DNMT3A27. So 
far, this prediction has not been confirmed. Genomic stud-
ies in mouse embryonic stem cells (ESCs) have not identified  
binding of DNMT3A at H3K36me3-marked domains51. 
Moreover, a point-mutation in the DNMT3A-PWWP domain 
designed to abrogate the in vitro-defined interaction with 
H3K36me327,52 does not cause reduced gene-body methylation 
in oocytes (Sendzikaite and Kelsey, unpublished data). Instead, 
DNMT3B has been shown to bind and functionally methylate 
H3K36me3 domains in ESCs51, but DNMT3B is functionally  
insignificant in mouse oocytes5. Recently, it was shown that 
DNMT3A is recruited to sites of H3K36me2 in C3H10T1/2 
mesenchymal stem cells (MSCs)53. However, the genomic  
distribution of H3K36me2 in oocytes has not been reported, and 
it is unclear whether it should be restricted to gene bodies, as it 
was found to have a more diffuse distribution than H3K36me3,  
encompassing both genic and intergenic regions in MSCs.

Another paradox concerns the role of DNMT3L. In the mouse, 
ablation of DNMT3L results in failure of de novo methyla-
tion in oocytes5,6,13. DNMT3L has no catalytic activity, so its 
requirement indicates an essential role in forming heterote-
tramers with DNMT3A54. However, RNA-seq analysis shows 
that DNMT3L is not transcribed in human oocytes3. Instead, 
it is possible that DNMT3B substitutes as a partner for  

DNMT3A. Intriguingly, it has recently been shown that although 
DNMT3B is essential for a major portion of the de novo meth-
ylation occurring in early post-implantation mouse embryos, 
this role can largely be provided by a catalytically inactive 
mutant of DNMT3B55. This study supports previous find-
ings from somatic cell lines, also suggesting that catalytically  
inactive isoforms of DNMT3B can fulfil a structural role as an 
accessory protein in helping to recruit other DNMTs, similar to  
DNMT3L56. Therefore, it might be that shorter, non-catalytic 
isoforms of DNMT3B replace DNMT3L in human oocytes as  
a partner for DNMT3A.

Factors yet to factor in
In addition to the factors highlighted above—transcription, 
chromatin, DNA methyltransferases—other molecular or cel-
lular components will be necessary for correctly establishing 
the DNA methylation pattern distinctive in oocytes. It might 
be anticipated that factors required to provide the metabolites 
for de novo methylation—S-adenosylmethionine (SAM) as  
the universal donor for the methylation reaction, but also other 
intermediary metabolites such as α-ketoglutarate required 
as a co-factor for lysine demethylases—could be rate-limit-
ing in certain circumstances, such as nutritional deprivation. At  
this time, there is no real evidence that this is the case, but 
changes in cellular metabolism have been linked to DNA meth-
ylation changes in other contexts. For instance, in somatic  
cells, mitochondrial depletion has been shown to alter methio-
nine metabolism, resulting in increased SAM levels and con-
sequent increase in DNA methylation57. It remains to be seen 
whether less dramatic, but more pervasive, nutritional imbal-
ances (and their physiological consequences), such as maternal 
high-fat diet, alter oocyte methylation in a manner that can be 

Figure 3. The role of STELLA in regulating methylation in the oocyte. In the oocyte, STELLA is required for the cytoplasmic localisation of 
the majority of DNA methyltransferase 1 (DNMT1)/ubiquitin-like, plant homeodomain and ring finger-containing 1 (UHRF1). Ablation of STELLA 
results in UHRF1/DNMT1 redistribution into the nucleus, resulting in increased DNA methylation at regions that are normally unmethylated. 
KO, knockout.
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rationalised by a biochemical mechanism. The availability of  
quantitative and sensitive methylation profiling methods, includ-
ing at the single-cell level58, should now enable these ques-
tions to be asked at a genome-wide level without preconceptions 
about the types of sequences that could be affected. Moreover, 
the knowledge of the underlying mechanism of de novo meth-
ylation and its relationship to chromatin properties should  
provide a rational explanation for any effects observed. Finally, 
the detailed knowledge we also have of how DNA methylation 
is reprogrammed during preimplantation embryo development 
should enable us to infer to what extent DNA methylation 
effects observed in oocytes could influence developmental  
progression or gene expression in the embryo.

A factor that does have an essential role in DNA methyla-
tion, but by still-obscure mechanisms, is the subcortical mater-
nal complex (SCMC). This is a multi-protein complex, whose 
constituents are abundantly expressed during oocyte growth 
and which becomes elaborated as a distinct structure under the 
oocyte plasma membrane59,60. It retains this configuration in  
blastomeres of cleavage embryos. The SCMC is essential for 
a number of vital processes during the egg-to-embryo transi-
tion, such as cellular organisation in the oocyte and mitotic 
cleavages in the early embryo60. Intriguingly, in humans, it also 
has an impact on the fidelity of DNA methylation in the oocyte  
and/or preimplantation embryo. This has been indicated by  
maternal-effect mutations in several components of the SCMC 
that are associated with imprinting defects or gestational  
trophoblast diseases61–67. Until recently, it was not known whether 
mutations in these proteins impaired de novo methylation 
in the oocyte or interfered with DNA methylation mainte-
nance in the cleavage embryo at a time of genome-wide DNA  
methylation programming during which methylation at imprints 
has to be maintained. Very recently, using single-cell bisulphite 
sequencing, we have shown that oocytes with a mutation 
in the SCMC protein KH domain containing 3-like (KHDC3L) 
have severely impaired methylation throughout the genome68. 
Although this is an important advance in knowledge because 
it identifies the stage at which methylation defects originate, it 
will be very challenging to elucidate the mechanism by which  
SCMC defects compromise DNA methylation establishment,  
given the lack of cellular models to explore these mechanisms 
in the oocyte. It is unclear whether the murine SCMC is also 
involved in DNA methylation establishment or imprint mainte-
nance. Mouse knockout models of most of the SCMC proteins 
result in very early embryo arrest, and analysis has not focused 

on DNA methylation59,69,70. Loss of NLR family pyrin domain 
containing 2 (NLRP2) was shown to alter the localisation of 
DNMT1 but not DNMT3A in the oocyte, but only minor and  
inconsistent changes in the methylation of imprinted genes 
were observed in embryos or newborn offspring71. A closer 
assessment of mouse SCMC proteins and their role in DNA  
methylation will be required to determine whether the SCMC 
has a similar function in mice as in humans and whether mouse 
knockout models could help to elucidate the mechanism  
by which it regulates DNA methylation in the oocyte.

Conclusions
The mammalian oocyte has a deceptively simple DNA  
methylation landscape that is likely to reflect transcription 
and associated chromatin remodelling events. Whole-genome 
sequencing studies assessing DNA methylation, transcription, 
and histone modifications in combination with gene knockouts 
in the mouse have supported early hypotheses, but atypical dis-
tribution of some histone modifications, as well as unexpected  
findings in the knockout models, mean that the involvement 
of some factors remains unclear. In addition to elucidating the  
factors involved in DNA methylation in the mouse, future  
studies will also have to link the effect of the unusual transcrip-
tional and epigenetic landscape of the oocyte to the embryo. 
Furthermore, it has become clear that although the link between  
transcription and DNA methylation seems to be upheld 
in human oocytes, other factors, such as the DNMTs and  
SCMC members, may be differentially regulated in humans.
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